skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bazán, Jorge L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the current literature on latent variable models, much effort has been put on the development of dichotomous and polytomous cognitive diagnostic models (CDMs) for assessments. Recently, the possibility of using continuous responses in CDMs has been brought to discussion. But no Bayesian approach has been developed yet for the analysis of CDMs when responses are continuous. Our work is the first Bayesian framework for the continuous deterministic inputs, noisy, and gate (DINA) model. We also propose new interpretations for item parameters in this DINA model, which makes the analysis more interpretable than before. In addition, we have conducted several simulations to evaluate the performance of the continuous DINA model through our Bayesian approach. Then, we have applied the proposed DINA model to a real data example of risk perceptions for individuals over a range of health‐related activities. The application results exemplify the high potential of the use of the proposed continuous DINA model to classify individuals in the study. 
    more » « less